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It is shown that Yih’s exact solution for the non-diffusive flow of a non-homo- 
geneous fluid into a sink in a confined porous medium is equivalent to a class of 
diffusive flows with isopycnic lateral boundaries. 

Yih (1961) investigated the non-diffusive two-dimensional flow of a non- 
homogeneous fluid in a porous medium. He determined the porous medium equiva- 
lent of his version of Long’s equation for the flow of density-stratified fluids and 
applied it to solving the problem of the flow of a linearly-stratified fluid into a 
two-dimensional sink in a confined porous medium. In  this note we show that 
there is an equivalence between the streamlines for the non-diffusive motion 
with constant viscosity and streamlines for the complete diffusive motion with 
isopycnic boundary conditions and that the density-distribution of the diffusive 
motion can be deduced from the solution given by Yih for the non-diffusive 
motion. 

Fluid of constant dynamic viscosity ,U containing a dissolved salt and in two- 
dimensional motion in a porous medium of intrinsic permeability k satisfies the 
equations 

IT (@z Px - $z P A  = DV2P- (2) 
(See Yih (1961)’ List (1968) for nomenclature.) The first equation embodies 
Darcy’s law and in fact states the conservation of vorticity; the second is derived 
from the mass conservation equation. 

When the flow is non-diffusive the term DV2p is not present and (2) then 
implies that the density p is a function of $ so that (1)  may be rewritten 

(Yih’s equation (15) for uniform viscosity) and dpld@ is determined from the 
upstream conditions. 

I n  the problem of confined flow of a linearly stratified fluid into a line sink as 
treated by Yih the upstream conditions (not explicitly stated by Yih) are 

P = P o - P P o ( M  @+ --c/3h (4 )  

$ = U d ( z / d )  (x+ --c/3), (5) 
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giving @Id$ = - /3po/ l i d  so that the problem becomes specified by 

(6) 
Yg + Y,, + BYC = 0, 

Y = O  a t  r=O and t = O  ( v < l ) ,  

The solution is given by Yih as 

a = +( -B+ 1/[B2+4n2~2]), 

B = R = gk/3po/pU. 

(9) 

(10) 

When the motion is diffusive, it  is apparent that a solution of (1)  and (2) of the 
form p = f ($) is no longer possible. However, in considering the same problem 
solved by Yih and maintaining the isopycnic conditions on lateral boundaries 
we determine the possibility of the existence of a solution of the form 

PIP0 = 1 + a (44 + b ($/ U d ) ,  (11)  

For a solution of this form to satisfy conditions (4) and (5) a t  infinity it can 
where a and b are as yet undetermined constants. 

easily be shown that 

Furthermore, substituting (11) into both (1)  and (2) we find ( 1 )  becomes 
(12) a + b =  -/3. 

and (2) becomes 

Equations (13) and (14) will be exactly the same equation if 

thus giving another equation for a and b in addition to  (12). 
We solve for a and b and find that the diffusive problem is specified by identi- 

cally the same equation and boundary conditions that specify the non-diffusive 
problem, namely (6) and ( 7 )  above, except that now 

B = P[( l+2R/P)3 -  11, (16) 

where P = aUd/2D is a Peclet number; thus each solution of Yih's corresponds 
to a whole class of diffusive flow solutions. It can easily be shown that when 
2R < P the parameter B above reduces to the value R it would have for a non- 
diffusive motion. The ratio of the two parameters R and P therefore gives a 
measure of the importance of diffusion in any given physical problem. Since it 
seems likely that in most physical situations 2R < P Yih's neglect of the 
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diffusive terms would appear justified. However, it is still worthwhile considering 
the influence of the diffusive term. When this condition is not satisfied, the 
streamlines of the diffusive motion will still coincide with those for some non- 
diffusive motion at  a lower value of R. The density distribution in the diffusive 
flow will, however, be modified from the non-diffusive distribution according 
to (1 1). To see the effect of diffusion on the streamline distribution we consider 
the case R = 4n. The following table gives the corresponding values of B for 

R P B various diffusive motions. 

47r 7r 2n 
4n 03 477 

Thus a diffusive flow with R = 47r, P = in is equivalent to a non-diffusive motion 
with R = 7r, or with P = n to a non-diffusive motion with R = 27r. The effect of 
diffusion is therefore displayed graphically in figures 1-3 in Yih (1961). Since P 
decreasing corresponds to  an increasing diffusion coefficient it is readily apparent 
what the effect of this is. The diagrams show the flow tending more towards a 
uniform density type as P decreases, just as one would expect. A similar trans- 
formation for the axially symmetric problem does not appear possible. 

47r &i- 71 

The author is indebted to Mr A. McNabb of the Applied Mathematics Division, 
D.S.I.R., Wellington, N.Z., who first drew his attention to the existence of this 
type of exact solution. 
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